6 research outputs found

    A Fault Tolerant Parallel Computing Scheme of Scalar Multiplication for Wireless Sensor Networks

    No full text
    International audienceIn event-driven sensor networks, when a critical event occurs, sensors should transmit messages back to base station in a secure and reliable manner. We choose Elliptic Curve Cryptography to secure the network since it offers faster computation and good security with shorter keys. In order to minimize the running time, we propose to split and distribute the computation of scalar multiplications by involving neighboring nodes in this operation. In order to improve the reliability, we have also proposed a fault tolerance mechanism. It uses half of the available cluster members as backup nodes which take over the work of faulty nodes in case of system failure. Parallel computing does consume more resources, but the results of simulation show that the computation can be significantly accelerated. This method is designed specially for applications where running time is the most important factor

    Fast Scalar Multiplication on Elliptic Curve Cryptography in Selected Intervals Suitable For Wireless Sensor Networks

    No full text
    International audienceIn Wireless Sensor Networks (WSNs), providing a robust security mechanism with limited energy resources is very challenging because of sensor node's limited resources (computation, bandwidth, memory). Asymmetric-key can fulfill the requirement, but if the number of nodes is large, symmetric-key cryptography is the best natural method because of its scalability. Asymmetric-key cryptography is power-hungry; nevertheless, Elliptic Curve Cryptosystems (ECC) are feasible and more flexible for sensor nodes. Scalar multiplication is the most widely used operation on ECC. Various methods for fast scalar multiplication exist, but they are based on the binary/ternary representation of the scalar. In this paper, we present a novel technique to make fast scalar multiplication on Elliptic Curve Cryptosystems over prime field for light-weight embedded devices like sensor nodes. Our method significantly reduces the computation of scalar multiplication by an equivalent representation of points based on point order in a given interval. Since our technique can act as a support for most existing methods, after an analytical and efficiency analysis, we implement and evaluate its performance in different scenari

    Elliptic curve cryptography and fault tolerance in sensor networks

    No full text
    L’émergence des systèmes embarqués a permis le développement des réseaux de capteurs sans fil dans de nombreux domaines différents. Cependant, la sécurité reste un problème ouvert. La vulnérabilité des nœuds est principalement liée au manque de ressources. En effet, l’unité de traitement ne dispose pas d’assez de puissance et de mémoire pour gérer des mécanismes de sécurité très complexes.La cryptographie est une solution qui est largement utilisée pour sécuriser les réseaux. Par rapport à la cryptographie symétrique, la cryptographie asymétrique nécessite des calculs plus compliqués,mais elle offre une distribution de clés plus sophistiquée et la signature numérique. Dans cette thèse, nous essayons d’optimiser la performance d’ECC (Elliptic Curve Cryptography), un cryptosystème asymétrique qui est connu pour sa robustesse et son utilisation de clé plus courte par rapport à RSA. Nous proposons d’utiliser le parallélisme pour accélérer le calcul de la multiplication scalaire, qui est reconnue comme l’opération la plus coûteuse sur les courbes elliptiques. Les résultats de tests ont montré que notre solution offre un gain intéressant malgré une augmentation de la consommation d’énergie.La deuxième partie de la contribution concerne l’application de la tolérance aux pannes dans notre architecture de parallélisation. Nous utilisons les nœuds redondants pour la détection des pannes et la restauration du calcul. Ainsi, en utilisant l’ECC et la tolérance aux pannes, nous proposons une solution de sécurité efficace et sûre pour les systèmes embarqués.The emergence of embedded systems has enabled the development of wireless sensor networks indifferent domains. However, the security remains an open problem. The vulnerability of sensor nodesis mainly due to the lack of resources. In fact, the processing unit doesn’t have enough power ormemory to handle complex security mechanisms.Cryptography is a widely used solution to secure networks. Compared with symmetric cryptography,the asymmetric cryptography requires more complicated computations, but it offers moresophisticated key distribution schemes and digital signature.In this thesis, we try to optimize the performance of ECC. An asymmetric cryptosystem which isknown for its robustness and the use of shorter keys than RSA. We propose to use parallelismtechniques to accelerate the computation of scalar multiplications, which is recognized as the mostcomputationally expensive operation on elliptic curves. The test results have shown that our solutionprovides a significant gain despite an increase in energy consumption.The 2nd part of our contribution is the application of fault tolerance in our parallelism architecture.We use redundant nodes for fault detection and computation recovery. Thus, by using ECC and faulttolerance, we propose an efficient and reliable security solution for embedded systems

    Cryptographie sur les courbes elliptiques et tolérance aux pannes dans les réseaux de capteurs

    No full text
    The emergence of embedded systems has enabled the development of wireless sensor networks indifferent domains. However, the security remains an open problem. The vulnerability of sensor nodesis mainly due to the lack of resources. In fact, the processing unit doesn’t have enough power ormemory to handle complex security mechanisms.Cryptography is a widely used solution to secure networks. Compared with symmetric cryptography,the asymmetric cryptography requires more complicated computations, but it offers moresophisticated key distribution schemes and digital signature.In this thesis, we try to optimize the performance of ECC. An asymmetric cryptosystem which isknown for its robustness and the use of shorter keys than RSA. We propose to use parallelismtechniques to accelerate the computation of scalar multiplications, which is recognized as the mostcomputationally expensive operation on elliptic curves. The test results have shown that our solutionprovides a significant gain despite an increase in energy consumption.The 2nd part of our contribution is the application of fault tolerance in our parallelism architecture.We use redundant nodes for fault detection and computation recovery. Thus, by using ECC and faulttolerance, we propose an efficient and reliable security solution for embedded systems.L’émergence des systèmes embarqués a permis le développement des réseaux de capteurs sans fil dans de nombreux domaines différents. Cependant, la sécurité reste un problème ouvert. La vulnérabilité des nœuds est principalement liée au manque de ressources. En effet, l’unité de traitement ne dispose pas d’assez de puissance et de mémoire pour gérer des mécanismes de sécurité très complexes.La cryptographie est une solution qui est largement utilisée pour sécuriser les réseaux. Par rapport à la cryptographie symétrique, la cryptographie asymétrique nécessite des calculs plus compliqués,mais elle offre une distribution de clés plus sophistiquée et la signature numérique. Dans cette thèse, nous essayons d’optimiser la performance d’ECC (Elliptic Curve Cryptography), un cryptosystème asymétrique qui est connu pour sa robustesse et son utilisation de clé plus courte par rapport à RSA. Nous proposons d’utiliser le parallélisme pour accélérer le calcul de la multiplication scalaire, qui est reconnue comme l’opération la plus coûteuse sur les courbes elliptiques. Les résultats de tests ont montré que notre solution offre un gain intéressant malgré une augmentation de la consommation d’énergie.La deuxième partie de la contribution concerne l’application de la tolérance aux pannes dans notre architecture de parallélisation. Nous utilisons les nœuds redondants pour la détection des pannes et la restauration du calcul. Ainsi, en utilisant l’ECC et la tolérance aux pannes, nous proposons une solution de sécurité efficace et sûre pour les systèmes embarqués

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore